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Uniqueness and Order in Sequential Effect Algebras
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A sequential effect algebra (SEA) is an effect algebra on which a sequential product
is defined. We present examples of effect algebras that admit a unique, many and
no sequential product. Some general theorems concerning unique sequential products
are proved. We discuss sequentially ordered SEAs in which the order is completely
determined by the sequential product. It is demonstrated that intervals in a sequential
ordered SEA admit a sequential product.
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1. INTRODUCTION

Quantum effects are a basic concept in foundational studies of quantum
physics (Busch et al., 1991; Busch and Singh, 1998; Davies, 1976; Douglas,
1966; Dvurečenskij and Pulmannová, 2000). Quantum effects correspond to yes–
no measurements that may be unsharp and in recent years they have been studied
within a general algebraic framework called an effect algebra (Bennett and Foulis,
1997; Dvurečenskij and Pulmannová, 2000; Foulis and Bennett, 1994; Giuntini
and Greuling, 1989; Kôpka and Chovanec, 1994). Although effect algebras have
been useful for our understanding of quantum theory they appear to be too general.
Effect algebras only describe one measurement connective OR (denoted by ⊕)
and a negation NOT (denoted by ′). Roughly speaking, ⊕ represents a parallel
measurement of two effects. However, it is important to have a mechanism for
describing series or sequential measurements of effects (denoted by ◦). For this
reason the authors have introduced a structure called a sequential effect algebra
(SEA) (Gudder, 1998b; Gudder and Greechie 2002). A SEA is an effect algebra on
which a sequential product ◦ with natural properties is defined. These properties
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hold in the important case of Hilbert space effect algebras (Gudder and Nagy,
2001a,b).

The present paper concentrates on uniqueness and order properties of SEAs.
We shall show that some effect algebras admit a unique sequential product, others
admit many and still others admit none. We also present some general results
on the uniqueness of sequential products. We then discuss a class of SEAs in
which the order is completely determined by the sequential product. We call this
class sequentially ordered SEAs. We give examples of SEAs that are sequentially
ordered and examples that are not. We finally show that intervals in a sequentially
ordered SEA admit a sequential product. Although we review some of the basic
properties of effect algebras and SEAs we refer the reader to our cited literature
for more details.

2. EFFECT ALGEBRAS

An effect algebra is an algebraic system (E, 0, 1,⊕) where 0 �= 1 ∈ E and
⊕ is a partial binary operation on E satisfying:

(A1) If a ⊕ b is defined, then b ⊕ a is defined and b ⊕ a = a ⊕ b.
(A2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are

defined and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c.
(A3) For every a ∈ E there exists a unique a′ ∈ E such that a ⊕ a′ = 1.
(A4) If a ⊕ 1 is defined, then a = 0.

If a ⊕ b is defined, we write a ⊥ b. We define a ≤ b if there exists a c ∈ E

such that a ⊕ c = b. It can be shown that (E,≤, ′ ) is a poset with 0 ≤ a ≤ 1 for
every a ∈ E, a′′ = a, and a ≤ b implies b′ ≤ a′ (Dvurečenskij and Pulmannová,
2000; Foulis and Bennett, 1994). Also, a ⊥ b if and only if a ≤ b′. If a ⊕ a ⊕
· · · ⊕ a (n summands) is defined we denote this element by na. An element a ∈ E

is sharp if a ∧ a′ = 0. If every element of E is sharp, then E is an orthoalgebra.
It is easy to show that E is an orthoalgebra if and only if a ⊥ a implies a = 0.

Example 1. For a Boolean algebra B, define a ⊥ b if a ∧ b = 0 and in this
case a ⊕ b = a ∨ b. Then (B, 0, 1,⊕) is an effect algebra that happens to be an
orthoalgebra. In particular, if X �= ∅, then (2X,∅, X,⊕) is an effect algebra.

Example 2. For [0, 1] ⊆ R, define a ⊥ b if a + b ≤ 1 and in this case a ⊕ b =
a + b. Then ([0, 1], 0, 1,⊕) is an effect algebra. The only sharp elements are 0
and 1.

Example 3. Let X �= ∅ and let F ⊆ [0, 1]X. We call F a fuzzy set system on X

(i) if the functions 0, 1 ∈ F , (ii) if f ∈ F then 1 − f ∈ F , (iii) if f, g ∈ F with
f + g ≤ 1 then f + g ∈ F and (iv) if f, g ∈ F then fg ∈ F . Then (F , 0, 1,⊕)
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is an effect algebra with f ⊕ g = f + g whenever f + g ≤ 1. If F = [0, 1]X we
call F a full fuzzy set system. The sharp elements of a fuzzy set system F are
the characteristic functions in F which can be identified with the (sharp) subsets
of X in F . Indeed, if f ∈ F is sharp, then f (1 − f ) ≤ f , 1 − f implies that
f (1 − f ) = 0. Hence, if f (x) �= 0, then f (x) = 1.

Example 4. Let H be a Hilbert space and let E(H ) be the set of self-adjoint
operators on H satisfying 0 ≤ A ≤ I . For A,B ∈ E(H ) we define A ⊥ B if
A + B ∈ E(H ) and in this case A ⊕ B = A + B. Then (E(H ), 0, I,⊕) is an effect
algebra. The elements of E(H ) are called quantum effects and are important in
quantum measurement theory (Busch et al., 1991; Busch and Singh, 1998; Davies,
1976; Kraus, 1983; Ludwig, 1883). The sharp elements of E(H ) are the set of
projection operators P(H ) on H .

Example 5. There are many examples of finite nonboolean effect algebras. The
simplest example is the 3-chain C3 = {0, a, 1} where 2a = 1. Another example
is the diamond D = {0, a, b, 1} where 2a = 2b = 1.

Example 6. Let E = ω + ω∗ be the set of elements

E = {
0, a, 2a, . . . , (2a)′, a′, 1

}
By convention 0a = 0. Define ⊕ on E by

(ma) ⊕ (na) = (m + n)a

and when n ≤ m

(ma)′ ⊕ (na) = (na) ⊕ (ma)′ = ((m − n)a)′

then (E, 0, 1,⊕) is an effect algebra.

Let (Ei, 0i , 1i ,⊕i) be a collection of effect algebras. One way of construct-
ing a new effect algebra is by taking the cartesian product �Ei and defining
�ai ⊥ �bi if ai ⊥ bi for every i in which case �ai ⊕ �bi = �(ai ⊕ bi). Then
(�Ei,�0i , �1i ,⊕) is an effect algebra. Another way is the horizontal sum con-
struction E = HS(Ei, i ∈ I ) defined as follows. Identify all 0i with a single
element 0 and all the 1i with a single element 1. Let E′

i = Ei\ {0i , 1i}, form the
disjoint union ∪̇E′

i and let E = {0, 1} ∪̇ E′
i . For a, b ∈ Ei for some i ∈ I , if a ⊥ b

define a ⊕ b = a ⊕i b and no other orthosums are defined on E. Then (E, 0, 1,⊕)
is an effect algebra. For example D = HS(C3, C3). Finally, if E is an effect al-
gebra and b ∈ E with b �= 0, then the interval [0, b] = {a ∈ E: 0 ≤ a ≤ b} can
be organized into an effect algebra as follows. If c, d ∈ [0, b] and c ⊕ d ≤ b we
define c ⊕b d = c ⊕ d. Then ([0, b], 0, b,⊕b) is an effect algebra.
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3. SEQUENTIAL EFFECT ALGEBRAS

For a binary operation ◦, if a ◦ b = b ◦ a we write a | b. A sequential effect
algebra (SEA) is an algebraic system (E, 0, 1,⊕, ◦) where (E, 0, 1,⊕) is an effect
algebra and ◦: E × E → E is a binary operation satisfying:

(S1) The map b �→ a ◦ b is additive for every a ∈ E, i.e., if b ⊥ c then a ◦ b ⊥
a ◦ c and a ◦ (b ⊕ c) = a ◦ b ⊕ a ◦ c.

(S2) 1 ◦ a = a for every a ∈ E.
(S3) If a ◦ b = 0, then a | b.
(S4) If a | b, then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c for every c ∈ E.
(S5) If c | a and c | b, then c | a ◦ b and, when a ⊥ b, c | (a ⊕ b).

We call an operation satisfying (S1)–(S5) a sequential product on E. If a | b

for every a, b ∈ E, then E is a commutative SEA. Notice that if ◦ is a commutative
binary operation on an effect algebra E, to test whether ◦ is a sequential product
we need only verify (S1), (S2) and a ◦ (b ◦ c) = (a ◦ b) ◦ c.

Given an effect algebra E, does E admit a sequential product and if so is it
unique? We shall show that anything goes. There exist effect algebras that do not
admit a sequential product. There are effect algebras that admit a unique sequential
product and effect algebras that admit many sequential products.

Example 1. (continued). A Boolean algebra is a SEA under the operation a ◦ b =
a ∧ b. It is shown in Gudder and Greechie (2002) that ◦ is unique.

Example 2. (continued). The unit interval [0, 1] ⊆ R is a SEA under the operation
a ◦ b = ab. We shall show later that ◦ is unique.

Example 3. (continued). A fuzzy set system F is a SEA under the operation
f ◦ g = fg. We shall show later that if F is full, then ◦ is unique.

Example 4. (continued). The effect algebra E(H ) is a SEA under the operation
A ◦ B = A1/2BA1/2 (Gudder and Nagy, 2001a,b). This SEA is important for
quantum measurement theory (Busch et al., 1991; Busch and Singh, 1998) and
is our first example of a noncommutative SEA. We do not know whether ◦ is
unique. However, as we shall later show, ◦ is unique if it satisfies some additional
conditions.

Example 5. (continued). The effect algebras C3 and D do not admit sequential
products. For C3 suppose we have a sequential product ◦. Then

a = a ◦ 1 = a ◦ (a ⊕ a′) = a ◦ a ⊕ a ◦ a′ = 2(a ◦ a)
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But there is no such element a ◦ a in C3 which is a contradiction. A similar
demonstration holds for D. More generally, it is shown in Gudder and Greechie
(2002) that no nonboolean finite effect algebra admits a sequential product.

Example 6. (continued). It is shown in Gudder and Greechie (2002) that E =
ω + ω∗ admits a unique sequential product. For x, y ∈ E this sequential product
is defined by

x ◦ y =



0 if x = ma, y = na

x ∧ y if x = ma, y = (na)′ or x = (ma)′, y = na

((m + n)a)′ if x = (ma)′, y = (na)′

Let D(H ) be the set of density operators on H . Notice that there exist
W ∈ D(H ) such that, for A ∈ E(H ), tr(WA) = 0 implies A = 0. We call such
a W faithful. Indeed, let xi be an orthonormal basis for H and denote the one-
dimensional projection onto the span of xi by Pi . Then W = ∑

λiPi where λi > 0,∑
λi = 1 is faithful.

Example 7. This is an example of an effect algebra that admits many sequential
products. Let E1 = E(H ), E2 = [0, 1] ⊆ R and E = HS(E1, E2). Define ◦: E ×
E → E as follows. If A,B ∈ E1 then A ◦ B = A1/2BA1/2; if a, b ∈ E2 then
a ◦ b = ab; if A ∈ E1, a ∈ E2 then A ◦ a = aA; and if a ∈ E2, A ∈ E1 then
a ◦ A = atr(WA) where W ∈ D(H ) is fixed and faithful. It is shown in Gudder
and Greechie (2002) that ◦ is sequential product on E. Notice that different faithful
W ∈ D(H ) give different sequential products.

Let a be a sharp element of an effect algebra E. Suppose we view a in a
larger context by enlarging E to an effect algebra F . Since a may not be sharp as a
member of F we say that sharpness is contextual in effect algebras. Physically we
would not expect sharpness to be contextual and this is an unfortunate property
for effect algebras. The next result shows that this unfortunate property holds for
any effect algebra that contains a nontrivial sharp element. The result also shows
that sharpness is noncontextual for SEAs. We denote the set of sharp elements
of an effect algebra E by ES . As usual, an embedding for an effect algebra is a
monomorphism (Dvurečenskij and Pulmannová, 2000; Foulis and Bennett, 1994).

Theorem 3.1. (i) If E is an effect algebra, then there exists an effect algebra F

and an effect algebra embedding φ: E → F such that FS = {0, 1}. (ii) If E and
F are SEAs and φ: E → F is a SEA embedding, then φ(a) ∈ FS if and only if
a ∈ ES .
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Proof: (i) Let G be a nontrivial abelian partially ordered group. Define

EG = (E\ {0, 1}) × G ∪ {(0, g), (1,−g): g ≥ 0}
and for (a, g), (b, h) ∈ EG define (a, g) ⊕ (b, h) = (a ⊕ b, g + h) provided that
a ⊥ b and (a ⊕ b, g + h) ∈ EG. Letting 0 = (0, 0), 1 = (1, 0), we shall show that
(EB, 0, 1,⊕) is an effect algebra. It is clear that (A1) (commutativity) holds.
Defining (a, g)′ = (a′,−g) it is easy to check that (A3) holds. To verify (A4),
suppose that (a, g) ⊕ 1 is defined. It follows that a = 0 and (1, g) ∈ EG. Since
(0, g) ∈ EG, it follows that g = 0. Hence, (a, g) = 0.

To verify (A2) (associativity), assume that (a, g), (b, h), (c, k) ∈ EG with
(b, h) ⊕ (c, k) ∈ EG and

(a, g) ⊕ [(b, h) ⊕ (c, k)] ∈ EG (∗)

Then

(a, g) ⊕ [(b, h) ⊕ (c, k)] = (a ⊕ (b ⊕ c), g + (h + k))

= ((a ⊕ b) ⊕ c, (g + h) + k)

= (a ⊕ b, g + h) ⊕ (c, k)

provided that (a ⊕ b, g + h) ∈ EG. Noting that this holds for all g, h ∈ G when
a ⊕ b /∈ {0, 1}, we need only consider the cases a ⊕ b ∈ {0, 1}. If a ⊕ b = 0, then
a = b = 0. Hence, g, h ≥ 0 so that (a ⊕ b, g + h) ∈ EG. If a ⊕ b = 1, then c = 0
so that k ≥ 0. Also, by (*), we have (g + h) + k ≤ 0 so that g + h ≤ −k ≤ 0.
Hence, (a ⊕ b, g + h) ∈ EG so (EG, 0, 1,⊕) is an effect algebra.

Note that (a, g) ≤ (b, h) in EG if and only if a ≤ b and (b � a, h − g) ∈
EG. We thus have either a < b or a = b and g ≤ h which is the lexicographic
order on EG. Define φ: E → EG by φ(a) = (a, 0). Clearly φ is an effect algebra
embedding of E into EG. To show that (EG)S = {0, 1} suppose (a, g) ∈ EG with
a �= 0, 1. Then for h ∈ G with h > 0 we have (0, h) ≤ (a, g), a′,−g). Hence,
(a, g) /∈ (EG)S . For the case (0, g) ∈ EG with g > 0 we have (0, g) < (1,−g)
and for the case (1, g) ∈ EG with g < 0 we have (0,−g) < (1, g).

(ii) If a ∈ ES , then φ(a) ◦ φ(a) = φ(a ◦ a) = φ(a) so that φ(a) ∈ FS . Con-
versely, if a /∈ ES then there exists a b ∈ E such that 0 < b ≤ a, a′. But then
0 < φ(b) ≤ φ(a), φ(a)′ so that φ(a) /∈ FS . �

The second part of the proof of Theorem 3.1(ii) shows that fuzziness is
noncontextual in an effect algebra E. That is, if φ: E → F is an effect algebra
embedding and a /∈ ES then φ(a) /∈ FS . The construction of the effect algebra EG

in the proof of Theorem 3.1(i) is of interest in its own right. The elements of the
form (0, g) ∈ EG act like infinitesimals. In the special case where E = {0, 1} is
trivial and G is the integers Z, we have that EZ is isomorphic to ω + ω∗.
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4. RESULTS

Theorem 4.1. There is a unique sequential product on the effect algebra
[0, 1] ⊆ R.

Proof: Let ◦ be a sequential product on [0, 1]. Then for any integer n ≥ 1 and
a ∈ [0, 1] we have

a = a ◦ 1 = a ◦
(

1

n
⊕ · · · ⊕ 1

n

)
= n

(
a ◦ 1

n

)

so that a ◦ 1
n

= 1
n
a. Also, for any integer 1 ≤ m ≤ n we have

a ◦ m

n
= a ◦

(
1

n
⊕ · · · ⊕ 1

n

)
= m

(
a ◦ 1

n

)
= m

n
a

Hence, for any rational number r ∈ Q ∩ [0, 1] we have a ◦ r = ar . Now let b ∈
[0, 1] be irrational. If r ∈ Q ∩ [0, 1] and b < r then by additivity we obtain

a ◦ b ≤ a ◦ r = ar

Similarly, if r ∈ Q ∩ [0, 1] and b > r , then

a ◦ b ≥ a ◦ r = ar

Since Q ∩ [0, 1] is dense in [0, 1], we obtain a ◦ b = ab. �

The next theorem formalizes the obvious observation that if two effect alge-
bras are isomorphic and one admits an operation satisfying some special condi-
tions, then so does the other.

Theorem 4.2. Let E,F be effect algebras and let φ: E → F be an effect algebra
isomorphism (Dvurečenskij and Pulmannová, 2000; Foulis and Bennett, 1994). If
◦ is a sequential product on E, then a ∗ b = φ[φ−1(a) ◦ φ−1(b)] is a sequential
product on F . Moreover, (E, ◦) and (F, ∗) are SEA isomorphic (Gudder and
Greechie, 2002).

Proof: The proof is a straightforward verification. �

Corollary 4.3. If E and F are isomorphic effect algebras and E admits a unique
sequential product ◦, then F admits a unique sequential product.

Proof: By Theorem 4.2, F admits a sequential product ∗. Let φ: E → F be an ef-
fect algebra isomorphism and define •: E × E → E by a • b = φ−1 [φ(a) ∗ φ(b)].
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By Theorem 4.2, • is a sequential product on E so that a • b = a ◦ b. Hence,

φ(a ◦ b) = φ(a • b) = φ(a) ∗ φ(b)

thus, for every c, d ∈ F we have

c ∗ d = φ[φ−1(c)] ∗ φ[φ−1(d)] = φ[φ−1(c) ◦ φ−1(d)]

It follows that ∗ is unique. �

Corollary 4.4. If an effect algebra E admits a unique sequential product ◦, then
any effect algebra automorphism φ: E → E is a SEA automorphism.

Proof: By Theorem 4.2, a ∗ b = φ−1 [φ(a) ◦ φ(b)] is a sequential product on E.
Hence, a ∗ b = a ◦ b and the result follows �

We say that a, b ∈ E coexist if there exist c, d, e ∈ E such that c ⊕ d ⊕ e is
defined and a = c ⊕ d, b = c ⊕ e.

Lemma 4.5. Let ◦ and ∗ be sequential products on an effect algebra E and let
b ∈ ES . If a ◦ b = b ◦ a, then a ∗ b = b ∗ a.

Proof: It is shown in Gudder and Greechie (2002) that a ◦ b = b ◦ a if and only
if a and b coexist. But coexistence is independent of the sequential product. �

Theorem 4.6. Let (Ei, 0i , 1i ,⊕i , ◦i) be SEAs, i ∈ I . Then E = �Ei admits a
unique sequential product if and only if each Ei , i ∈ I , admits a unique sequential
product.

Proof: If Ej admits two sequential products for some j ∈ I , then clearly �Ei

admits at least two sequential products. Conversely, suppose Ei , i ∈ I , admits a
unique sequential product ◦i and let ∗ be a sequential product on �Ei . For j ∈ I ,
let fj ∈ �Ei be define by

fj (i) =
{

1j if i = j

0i if i �= j

Clearly, fj ∈ ES . Let ◦ be the sequential product on E given by (f ◦ g)(i) =
f (i) ◦i g(i), i ∈ I , for any f, g ∈ E. Since f ◦ fj = fj ◦ f , by Lemma 4.5, f ∗
fj = fj ∗ f for any f ∈ E. It follows from Theorem 3.4 (Gudder and Greechie,
2002) that f ∗ fj = f ∧ fj . Hence,

f ∗ fj (i) =
{

0i if i �= j

f (j ) if i = j
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For any f, g ∈ E we have

(f ∗ g) ∗ fj = fj ∗ (f ∗ g) = (fj ∗ f ) ∗ g = [
(f ∗ fj ) ∗ fj

] ∗ g

= (f ∗ fj ) ∗ (fj ∗ g)

Now [0, fj ] ⊆ E is an effect algebra with greatest element fj and φ: Ej → [0, fj ]
given by

[φ(a)] (i) =
{

0i if i �= j

a if i = j

is an effect algebra isomorphism. Since Ej admits a unique sequential product, by
Corollary 4.3, [0, fj ] admits a unique sequential product. Hence,

(f ∗ g)(j ) = [(f ∗ g) ∗ fj ](j ) = [(f ∗ fj ) ∗ (g ∗ fj )](j )

= [(f ∗ fj ) ◦ (g ∗ fj )](j ) = (f ∗ fj )(j ) ◦j (g ∗ fj )(j )

= f (j ) ◦j g(j ) = (f ◦ g)(j )

Hence, ◦ is the unique sequential product on E. �

Corollary 4.7. A full fuzzy set system E = [0, 1]X admits a unique sequential
product.

Proof: This follows from Theorem 4.6 because, by Theorem 4.1, [0, 1] admits
a unique sequential product �

The next result characterizes the only known sequential product on E(H ). For
x ∈ H with ‖x‖ = 1, Px denoted the one-dimensional projection onto the span
of x.

Theorem 4.8. Let ◦: E(H ) × E(H ) → E(H ) be a binary operation. Then A ◦
B = A1/2BA1/2 for every A,B ∈ E(H ) if and only if the following conditions are
satisfied: (1) B �→ A ◦ B is σ -additive in the strong operator topology for every
A ∈ E(H ); (2) (λA) ◦ B = λ(A ◦ B) for every λ ∈ [0, 1]; (3) there exists a Borel
function f : [0, 1] → [0, 1] such that f (1) = 1 and 〈A ◦ Pxy, y〉 = |〈f (A)x, y〉|2
for every A ∈ E(H ), x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof: We have already observed that A ◦ B = A1/2BA1/2 is a sequential op-
eration on E(H ); that these properties hold for this operation is straightforward,
with f (λ) = λ1/2 in (3). To prove the converse, assume the conditions and observe
that, by (2) and (3), for every λ ∈ [0, 1] we have

|〈f (λA)x, y〉|2 = 〈(λA) ◦ Pxy, y〉 = λ〈A ◦ Pxy, y〉
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= λ |〈f (A)x, y〉|2

= |〈λ1/2f (A)x, y〉|2

Letting y = x gives 〈f (λA)x, x〉 = 〈
λ1/2f (A)x, x

〉
for every x ∈ H with ‖x‖ = 1.

Hence, f (λA) = λ1/2f (A). Letting A = I gives

f (λ)I = f (λI ) = λ1/2f (I ) = λ1/2I

so that f (λ) = λ1/2. Thus,

〈A ◦ Pxy, y〉 = |〈A1/2x, y〉|2 = 〈A1/2PxA
1/2y, y〉

for every y ∈ H with ‖y‖ = 1. It follows that A ◦ Px = A1/2PxA
1/2. By (1) we

have A ◦ P = A1/2PA1/2 for every P ∈ P(H ). As in the proof of Theorem 4.1
we have A ◦ (λB) = λA ◦ B for every λ ∈ [0, 1]. Hence, by (1) we conclude that
A ◦ B = A1/2BA1/2 for every B ∈ E(H ) with finite spectrum. Since any B ∈ E(H )
is the strong limit of an increasing sequence of Bi ∈ E(H ) with finite spectra, it
follows from (1) that A ◦ B = A1/2BA1/2 for every B ∈ E(H ). �

Since the sequential product A ◦ B = A1/2BA1/2 is the only known sequen-
tial product in E(H ), we shall refer to it as the standard sequential product on
E(H ). When we refer to E(H ) as a SEA, without reference to a specific sequential
product, we mean with respect to the standard sequential product.

5. SEQUENTIALLY ORDERED SEA’s

An effect algebra E is sharply dominating if for every a ∈ E there exists a
least element â ∈ ES such that a ≤ â (Gudder, 1998). A sharply dominating SEA
is sequentially ordered if (1) a ≤ b implies that there exists a c ∈ E such that
a = b ◦ c and (2) if c ◦ a ≤ c ◦ b then ĉ ◦ a ≤ ĉ ◦ b. Notice that the converses of
(1) and (2) hold for any SEA. Condition (1) states that the order is completely
determined by ◦ (a ≤ b if and only if a = b ◦ c for some c). This is similar to order
being completely determined by ⊕ (a ≤ b if and only if a ⊕ c = b for some c). It
is easy to check that Boolean algebras and [0, 1] ⊆ R are sequentially ordered.

Example 3. (continued). Let E = [0, 1]X be a full fuzzy set system. For f ∈ E

let

supp(f ) = {x ∈ X: f (x) �= 0}
and define f̂ to be the characteristic function on supp(f ). Then f̂ is the least sharp
element that dominates f so E is sharply dominating. If f ≤ g then f = gh
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where

h(x) =
{

f (x)/g(x) if g(x) �= 0

0 if g(x) = 0

Hence, E satisfies Condition (1). If hf ≤ hg, then f (x) ≤ g(x) for all x ∈ supp(h)
so ĥf ≤ ĥg. Hence, E satisfies Condition (2) so E is sequentially ordered.

Now let F be the fuzzy set system of all polynomial functions f : [0, 1] →
[0, 1]. Then FS = {0, 1} and F is sharply dominating. But F does not satisfy (1) so
F is not sequentially ordered. Indeed, the functions f (x) = 1

2x and g(x) = 1
2 + 1

2x

are in F and f ≤ g. Suppose there exists an h ∈ F such that f = gh. Then
h(x) = x/(x + 1) on [0, 1] but h /∈ F which is a contradiction. However, F does
satisfy (2). Indeed, if hf ≤ hg then f (x) ≤ g(x) for all x ∈ supp(h). But if h �= 0,
then h(x) = 0 for only a finite number of points xi ∈ [0, 1], i = 1, . . . , n. If
f (xi) > g(xi) for some i, then by continuity f (x) > g(x) in a neighborhood of xi

which is a contradiction. Hence,

ĥf = f ≤ g = ĥg

Example 4. (continued). It is well known that E(H ) is sharply dominating
(Gudder, 1998). We shall show in the next theorem that E(H ) is sequentially
ordered.

Example 6. (continued). The SEA ω + ω∗ is sharply dominating with (ω +
ω∗)S = {0, 1}. However, ω + ω∗ is not sequentially ordered. Indeed, a ≤ 2a but
there is no c ∈ ω + ω∗ such that a = (2a) ◦ c. Also, (2) does not hold because
a ◦ 2a = 0 = a ◦ a but

â ◦ 2a = 2a �≤ a = â ◦ a

Example 7. (continued). It is easy to check that E = HS (E(H ), [0, 1]) is sharply
dominating and satisfies (1). However, E does not satisfy (2). Indeed, if a ∈ (0, 1)
then a ◦ A ≤ a ◦ B if and only if tr(WA) ≤ tr(WB) but this does not imply that

â ◦ A = A ≤ B = Â ◦ B

This observation together with the second part of Example 3 shows that Condi-
tions (1) and (2) are logically independent.

Theorem 5.1. The SEA E(H ) is a sequentially ordered.

Proof: For A ∈ E(H ) let PA be the projection onto the closure of the range R(A)
of A. Then PA ∈ P(H ) = E(H )A and it is easy to see that PA is the least sharp
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element satisfying A ≤ PA. Hence, PA = Â and E(H ) is sharply dominating. We
now show that if C ∈ E(H ), then R̄(C) = R̄(C1/2). If Cx = 0, then

〈C1/2x, C1/2x〉 = 〈Cx, x〉 = 0

so that C1/2x = 0. Hence, Ker(C) ⊆ Ker(C1/2). Conversely, if C1/2x = 0 then
Cx = 0 so Ker(C1/2) ⊆ Ker(C). Hence, Ker(C) = Ker(C1/2) and we have

R(C) = Ker(C)⊥ = Ker(C1/2)⊥ = R(C1/2)

Now suppose that C ◦ A ≤ C ◦ B. Then for any x ∈ H we have

〈AC1/2x, C1/2x〉 ⊆ 〈BC1/2x, C1/2x〉
Hence,〈Ay, y〉 ≤ 〈By, y〉 for any y ∈ R(C1/2) = R(C). We conclude that

〈APCx, PCx〉 ≤ 〈BPCx, PCx〉
for any x ∈ H . Hence,

Ĉ ◦ A = PCAPC ≤ PCBPC = Ĉ ◦ B

so Condition (2) holds. To verify Condition (1) suppose that A ≤ B. Then
A1/2A1/2 ≤ B1/2B1/2 and it follows from (Douglas, 1966) that there exists a
bounded linear operator T on H such that ‖T ‖ ≤ 1 and A1/2 = B1/2T . Letting
C = T T ∗, we see that C ≥ 0. Moreover, for any x ∈ H we have

〈Cx, x〉 = 〈
T ∗x, T ∗x

〉 = ‖T ∗x‖2 ≤ ‖T ∗‖2‖x‖2 ≤ ‖x‖2 = 〈x, x〉
so that C ∈ E(H ). Hence,

A = A1/2(A1/2)∗ = B1/2T T ∗B1/2 = B1/2CB1/2 = B ◦ C �

Theorem 5.2. Let E be a sequentially ordered SEA. For a, b ∈ E with a ≤ b

there exists a unique c ∈ E such that c ≤ b̂ and a = b ◦ c.

Proof: By Condition (1) there is a d ∈ E such that a = b ◦ d. Letting c = b̂ ◦ d

we have c ≤ b̂ and

a = b ◦ d = (b ◦ b̂) ◦ d = b ◦ (b̂ ◦ d) = b ◦ c

For uniqueness, suppose that c1 ≤ b̂ and a = b ◦ c1. Then b ◦ c1 = b ◦ c and
applying Condition (2) we have

c1 = b̂ ◦ c1 = b̂ ◦ c = c �

We denote the unique element c in Theorem 5.2 by c = a/b and call c the
sequential quotient of a over b. Thus, /is a partial binary operation on E with
domain {(a, b): a ≤ b}.
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Corollary 5.3. Let E be a sequentially ordered SEA. (i) For every a, b, c ∈ E

there exists a unique d ∈ E such that d ≤ (a ◦ b)∧ and a ◦ (b ◦ c) = (a ◦ b) ◦ d.
(ii) a ≤ b if and only if there exists a unique d ∈ E such that d ≥ (b̂)′ and
a ⊕ b ◦ d = b.

Proof: (i) Since b ◦ c ≤ b we have a ◦ (b ◦ c) ≤ a ◦ b. By Theorem 5.2 there
exists a unique d ∈ E such that d ≤ (a ◦ b)∧ and a ◦ (b ◦ c) = (a ◦ b) ◦ d. (ii) If
a ≤ b, then by Theorem 5.2 there exists a unique c ∈ E (namely, c = a/b) such
that c ≤ b̂ and a = b ◦ c. Hence, c′ ≥ (b̂)′ and

b = b ◦ c ⊕ b ◦ c′ = a ⊕ b ◦ c′

with the uniqueness of c′ following from the uniqueness of c. The converse is
clear. �

The proof of the next lemma is straightforward.

Lemma 5.4. Let E be a sequentially ordered SEA and let a ∈ E. (i) a/a = â.
(ii) a ∈ ES if and only if a/a = a. (iii) Let b ∈ ES . If a ≤ b then a/b = a and if
b ≤ a then b/a = b. In particular, a/1 = a and 0/a = 0 for every a ∈ E. (iv) If
n ≥ 1, then an+m/am = an.

If a ≤ b then the unique c such that a ⊕ c = b is denoted by b � a.

Theorem 5.5. Let E be a sequentially ordered SEA with a, b, c ∈ E. (i) If
a ≤ b then (b � a)/b = b̂ ◦ (a/b)′. (ii) (a ◦ b)/a = â ◦ b. (iii) If a ≤ b ≤ c then
a/c ≤ b/c. (iv) Let a, b ≤ c. Then a ⊕ b ≤ c iff (a/c) ⊥ (b/c), and in this case
(a ⊕ b)/c = a/c ⊕ b/c. (v) a/(a ⊕ b) = (a ⊕ b)∧ ◦ [b/(a ⊕ b)]′. (vi) If a ≤ b

and b | (a/b) then b | a.

Proof: (i) For a ≤ b we have

b ◦ [b̂ ◦ (a/b)′] = b ◦ (a/b)′ = b ◦ (1 � a/b) = b � b ◦ (a/b) = b � a

and b̂ ◦ (a/b)′ ≤ b̂. (ii) Since a ◦ b = a ◦ (â ◦ b) and â ◦ b ≤ â we have (a ◦
b)/a = â ◦ b. (iii) Since a = c ◦ (a/c) and b = c ◦ (b/c) we have c ◦ (a/c) ≤
c ◦ (b/c). Applying Condition (2) gives

a/c = ĉ ◦ (a/c) ≤ ĉ ◦ (b/c) = b/c

(iv) If a ⊕ b ≤ c, then a, b ≤ c and both a/c and b/c are defined. Since a ≤ c � b,
by (i) and (iii) we have

a/c ≤ (c � b)/c = ĉ ◦ (b/c)′ = ĉ � (b/c)
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Hence, a/c ⊕ b/c is defined. Now

a ⊕ b = c ◦ (a/c) ⊕ c ◦ (b/c) = c ◦ (a/c ⊕ b/c)

Since, by Lemma 4.2 of Gudder and Greechie (2002), a/c ⊕ b/c ≤ ĉ we
have (a ⊕ b)/c = a/c ⊕ b/c. If (a/c) ⊥ (b/c) then, since

c ◦ (a/c ⊕ b/c) = c ◦ (a/c) ⊕ c ◦ (b/c) = a ⊕ b

we have a ⊕ b ≤ c. The result now follows from the above.
(v) This follows from (i).
(vi) This follows because b ◦ a = b ◦ [b ◦ (a/b)] = [b ◦ (a/b)] ◦ b = a ◦ b �

The next result shows that the condition in Theorem 5.5(ii) characterizes the
sequential quotient.

Lemma 5.6. Let E be a sequentially ordered SEA. If // is a partial binary
operation on E with domain {(a, b): a ≤ b} and (a ◦ b)//a = â ◦ b for every a, b ∈
E, then // and / coincide.

Proof: If a ≤ b then a = b ◦ c where c ≤ b̂. Hence

a//b = b ◦ c//b = b̂ ◦ c = c = a/b �

Let E be an effect algebra and let b ∈ E with b �= 0. Then we have seen in
Section 2 that ([0, b], 0, b,⊕b) is an effect algebra. If E is also a SEA, does [0, b]
admit a sequential product? If b ∈ ES the answer is yes. Just restrict ◦ to [0, b].
In this case, b ◦ a = a for all a ∈ [0, b] and the other axioms are easily verified
so that ([0, b], 0, b,⊕b, ◦) is a SEA. In general, the answer is no. For example,
in ω + ω∗ the interval [0, 2a] = {0, a, 2a} is isomorphic to C3 so [0, 2a] does
not admit a sequential product. We now show that the answer is positive if E is
sequentially ordered.

Let E be a sequentially ordered SEA and let b ∈ E with b �= 0. Define
φb: [0, b] → [0, b̂] by φb(a) = a/b.

Lemma 5.7. The map φb: [0, b] → [0, b̂] is an effect algebra isomorphism.

Proof: By Theorem 5.5 (iv), if a, c ∈ [0, b] and a ⊕ c ≤ b then

φb(a ⊕ c) = (a ⊕ c)/b = a/b ⊕ c/b = φb(a) ⊕ φb(c)

Hence, φb is additive. Also, φb(b) = b̂ so φb is a morphism (Dvurečenskij
and Pulmannová, 2000; Foulis and Bennett, 1994). If φb(a) ⊥ φb(c) then by
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Theorem 5.5 (v), a ⊕ c ≤ b so a ⊥ c. Thus, φb is a monomorphism (Dvurečenskij
and Pulmannová, 2000; Foulis and Bennett, 1994). If c ∈ [0, b̂], letting a = b ◦ c

we have a ∈ [0, b] and φb(a) = a/b = c. Hence, φb is surjective so φb is an effect
algebra isomorphism. �

Theorem 5.8. Let E be a sequentially ordered SEA and let b ∈ E with b �= 0.
(i) There exists a unique sequential product ◦b on [0, b] such that

(a ◦b c)/b = (a/b) ◦ (c/b)

(ii) Employing this sequential product on [0, b], φb: [0, b] → [0, b̂] becomes
a SEA isomorphism.

Proof: (i) Uniqueness follows from a ◦b c = b ◦ [(a/b) ◦ (c/b)]. By
Lemma 5.7, φb: [0, b] → [0, b̂] is an effect algebra isomorphism. Letting
ψ = φ−1

b we conclude, using Theorem 4.5 part (ii), that ψ : [0, b̂] → [0, b] is an
effect algebra isomorphism given by ψ(a) = b ◦ a. Applying Theorem 2, for
a, c ∈ [0, b] we have

a ∗ c = ψ[ψ−1(a) ◦ ψ−1(b)] = b ◦ [φb(a) ◦ φb(c)] = b ◦ [(a/b) ◦ (c/b)]

is a sequential product on [a, b]. (ii) This follows from Theorem 4.2. �
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